: BF; BFIB \& Microwave, Theory, Design

Smith Chart Tutorial Part 2 - Transmission Line Matching

Solution of matching problems on a Smith Chart

$$
\Gamma=\frac{Z_{\mathrm{L}}-Z_{o}}{Z_{\mathrm{L}}+Z_{o}}
$$

If $\mathrm{ZL}=\mathrm{Zo}$ then all the power is transmitted to the load.
If $Z \mathrm{~L} \neq \mathrm{Zo}$ then some power will be reflected ie mismatched.

Matching

add element to T.L to make $\Gamma \rightarrow 0$.

: RF, RFIB8 Mictowayg Theoty, Dgsigh
(a) Series Matching
(1) Plot $Z L=Z_{L} / Z o$ on Smith Chart.
(2) Draw VSWR circle through Z_{L}.
(3) Transform Z_{L} to Z_{L} ' by moving BACKWARDS from Z_{L} to the $r=1$ circle.
(4) Here $Z_{L}{ }^{\prime}=1+j X_{L}{ }^{\prime} \therefore$ read $X_{L}{ }^{\prime}$ from Smith Chart.
(5) Add matching element $X_{m}=-X_{L}{ }^{\prime}$ at this point. The total impedance $=$

$$
\begin{aligned}
& Z_{L}=1+j X_{L}^{\prime}+j X_{m} . \\
& =1+j X_{L}^{\prime}-j X_{L}^{\prime}=1+j 0 \text { (centre of Smith Chart - matched). }
\end{aligned}
$$

Sheet
3 of 4
wwwiffic:Co.uk

BACKWARDS by L / λ_{g} takes us to
Zin.

Series Stubs

\% BE, REIC \& Microwaue Theory, Design
(b) Shunt Matching
(1) Plot ZL
(2) Transform to YL (diametrically opposite point).
(3) Proceed as for the series matching case, but using the Smith Chart as an admittance diagram. $\mathrm{ie} \Rightarrow \mathrm{g}=1$ circle, read off $\mathrm{B}_{\mathrm{L}}{ }^{\prime}$, add $\mathrm{Bm}=-\mathrm{B}_{\mathrm{L}}{ }^{\prime}$ at distance L .

NOTE +ve Susceptance is a shunt capacitance and -ve is a shunt inductance.

Shunt Stubs

